М. И. БАРАНОВ, д-р техн. наук, главн. науч. сотр., НТУ «ХПИ»; *В. М. ЗИНЬКОВСКИЙ*, зав. сектором, НТУ «ХПИ»; *Ю. П. ЗЯБКО*, вед. инж., НТУ «ХПИ»; *Н. И. ИГНАТЕНКО*, канд. техн. наук, зав. сектором, НТУ «ХПИ»; *Н. И. КРУГЛИК*, вед. инж., НТУ «ХПИ»; *В. Л. ЦЕХМИСТРО*, техник, НТУ «ХПИ»

ВЛИЯНИЕ ЗАРЯДНЫХ РЕЗИСТОРОВ ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ НА ДЛИТЕЛЬНОСТЬ ФОРМИРУЕМЫХ НА НАГРУЗКЕ АПЕРИОДИЧЕСКИХ ИМПУЛЬСОВ СВЕРХВЫСОКОГО НАПРЯЖЕНИЯ

Приведены результаты экспериментальных исследований по влиянию величин активных сопротивлений зарядных резисторов ступеней генератора ГИН-4 на временные параметры апериодических импульсов сверхвысокого напряжения микро- и миллисекундной длительности, получаемых на длинном воздушном разрядном промежутке.

Ключевые слова: генератор импульсного напряжения, зарядный резистор, длительность импульса напряжения.

Введение

В высоковольтной импульсной технике (ВИТ), предназначенной для проведения испытаний различной изоляции на электрическую прочность [1] и широкой номенклатуры электроэнергетического оборудования на стойкость к воздействию импульсов напряжения (тока) естественного (от прямых и косвенных ударов линейной молнии [2,3]) и искусственного (от коммутационных переключений в линиях электропередачи [4]) происхождения, необходимы высоковольтные испытательные установки, способные генерировать на той или иной электрической нагрузке грозовые и коммутационные импульсы сверхвысокого напряжения (порядка 1 MB и более). Создание нового подобного действующего высоковольтного испытательного оборудования сопряжено, прежде всего, с большими финансовыми и материальными затратами. В этой связи перед сотрудниками отдела №6 нашего института в период 2011-2012 гг. возникла научно-техническая задача, связанная с исследованием возможности использования для целей разработки и создания генератора стандартного апериодического коммутационного импульса сверхвысокого напряжения ВИТ наружной установки, размещенной на испытательном полигоне НИПКИ «Молния» НТУ «ХПИ» (п. Андреевка, Харьковской обл.). Предварительный анализ имеющегося в распоряжении сотрудников отдела №6 на полигоне института действующего высоковольтного оборудования показал, что соответствующим требованиям в определенной части

[©] М.И.Баранов, В.М.Зиньковский, Ю.П.Зябко, Н.Н.Игнатенко, Н.И.Круглик, В.Л.Цехмистро, 2012

может удовлетворять лишь генератор импульсных напряжений ГИН-4 этажерочного типа (рис. 1), характеризующийся номинальным выходным напряжением 4 МВ и номинальной запасаемой электрической энергией 1 МДж [5,6].

1. Основные технические характеристики исходного зарядноразрядного контура генератора ГИН-4

На рис. 2 приведена принципиальная электрическая схема зарядноразрядного контура (ЗРК) генератора ГИН-4. Этот контур выполнен по классической схеме и содержит 16 каскадов ($n_k = 16$) или 32 ступени ($n_c = 32$) [5,6].

Рисунок 1 – Общий вид генератора ГИН-4 на номинальное напряжение 4 MB и номинальную запасаемую в его конденсаторах электрическую энергию 1 МДж [5,6]

В состав каждого каскада ГИН-4, состоящего их двух заряженных до одинакового зарядного напряжения U_3 противоположных полярностей ступеней, входят 8 конденсаторов *C* в металлическом корпусе типа КБМГ-125/1 ($U_3 = \pm 125$ кВ; C = 1 мкФ; разработка НИПКИ «Молния») и один неуправляемый воздушный шаровой разрядник *F*, диаметр электродов которого равен 125 мм [5,6]. ЗРК генератора ГИН-4 имеет девять успокоительных резисторов R_y по 0,5 Ом каждый и 16 разрядных резисторов R_p по 110 кОм каж-

дый [5,6]. Параллельный заряд всех 128 шт. конденсаторов C генератора ГИН-4 осуществляется с помощью повысительно-выпрямительного устройства – источника постоянного напряжения через четыре ветви (по две на каждую полярность) зарядных резисторов R_3 , активное сопротивление каждого из которых составляет 500 Ом, и две ветви разрядных резисторов R_P (см. рис. 2).

Рисунок 2 – Принципиальная электрическая схема генератора ГИН-4, содержащего 16 каскадов на номинальное напряжение 250 кВ (по 8 высоковольтных импульсных конденсаторов *C* и 1-му двухэлектродному шаровому разряднику *F* в каждом) и подключенного на выходе своим металлическим экраном-крышей к формирующей цепи (активному сопротивлению R_{Φ} и нагрузочной емкости $C_{\rm H}$) и объекту испытаний ОИ [5,6]

По достижению на конденсаторах C заданного уровня зарядного напряжения U_3 на управляемый воздушный трехэлектродный разрядник F_1 (трига-

трон [7]) от генератора пусковых импульсов (ГПИ) или на управляемый воздушный многозазорный разрядник F₁ [8] от генератора высоковольтных поджигающих импульсов (ГВПИ) подается запускающий микросекундный импульс напряжения соответственно амплитудой ±10 кВ или ±100 кВ. После срабатывания управляемого разрядника F₁ из-за последовательного возникновения в разрядной цепи ЗРК перенапряжений происходит срабатывание по высоте генератора ГИН-4 двухэлектродных разрядников *F* всех его каскадов, что приводит к быстрому заряду металлического экрана-крыши и последующему формированию на объекте испытаний (ОИ), например, при помощи указанных на рис. 2 активного сопротивления R_{Φ} и нагрузочной емкости $C_{\rm H}$, требуемого импульса напряжения. В режиме холостого хода (XX) генератора ГИН-4, когда в его разрядной цепи отсутствуют формирующие элементы R_{Φ} и С_н, а в качестве ОИ выступает электрически непробиваемый длинный воздушный разрядный промежуток, на подобном ОИ фронт возникающего апериодического импульса напряжения будет определять постоянная времени заряда т_{зк} металлической крыши-экрана исследуемого генератора ГИН-4, а спад (длительность) – постоянная времени разряда т₃₁ суммарной емкости рассматриваемого нами генератора ГИН-4 (его «емкости в разряде» $C_{\Gamma} = 0,125 \text{ мк}\Phi$) через ветви низкоомных зарядных резисторов R_3 соответствующей полярности. Такой разряд емкости С_Г будет происходить благодаря срабатыванию управляемого разрядника F₁ первой ступени ЗРК генератора ГИН-4 и соответственно появлению гальванической связи соответствующих ветвей зарядных резисторов R₃ непосредственно с землей, имеющей приближенно нулевой потенциал. Постоянная же времени разряда τ_{P1} емкости C_{Γ} в этом случае через ветви разрядных резисторов R_P рассматриваемого генератора будет примерно в $2R_{\rm P}/R_3 = 440$ раз больше величины τ_{31} . Поэтому и спад (длительность ти1 на уровне половины амплитуды Um) получаемого на ОИ импульса напряжения в режиме XX генератора ГИН-4 будет определять вепринимающая значение, личина τ_{31} , равное около $\tau_{31} \approx R_3 \cdot C_{\Gamma} \approx 500 \text{ x } 0.125 \cdot 10^{-6} \approx 62.5 \text{ мкс. Тогда в режиме XX генератора}$ ГИН-4, зарядные цепи которого реализованы на основе исходного («старого») зарядного резистора номиналом для каждого $R_3 = 500$ Ом (рис. 3), величина длительности формируемого на принятом ОИ (воздушном промежутке) импульса напряжения окажется примерно равной $\tau_{U1} \approx 0.7 \cdot \tau_{31} \approx 43.7$ мкс. На рис. 4 в подтверждение приведенных выше численных оценок величин τ_{31} и τ_{И1} представлена осциллограмма импульса напряжения на принятом ОИ в режиме XX генератора ГИН-4 для $R_3 = 500$ Ом.

Следует указать, что при измерении в соответствии с [9] формируемых с помощью генератора ГИН-4 на длинном воздушном разрядном промежутке с электродами в виде шаров диаметром 125 мм импульсов высокого и сверхвысокого напряжений нами был использован омический делитель напряжения типа ОДН-2 собственной разработки [10]. Данный делитель имел высоковольтное плечо с активным сопротивлением 107,3 кОм и низковольтное плечо с активным сопротивлением 4 Ом. Поэтому коэффициент деления данного делителя импульсного напряжения был равен $K_{\rm A} = 26825$. С учетом двухстороннего согласования экранированной кабельной линии передачи длиной 60 м этого делителя масштабный коэффициент используемого средства измерения импульсного напряжения оказался примерно равным $K_{\rm M} = 2K_{\rm A} = 53650$.

Рисунок 3 – Внешний вид основных элементов зарядно-разрядного контура генератора ГИН-4, содержащего в «старой» зарядной электрической схеме 32 зарядных резистора номиналом 500 Ом, выполненных на основе нихромовой проволоки диаметром 1 мм, намотанной на стеклопластиковую трубу и залитой эпоксидным компаундом [5]

В этой связи амплитуда U_m апериодического импульса напряжения на выбранном нами ОИ в цепи генератора ГИН-4 при выполнении режима его $U_m = 11.6$ XX согласно осциллограмме на рис. 4 будет равной Bx53650 = 622,3 кВ. Отметим, что при фиксации измеряемого на ОИ импульсного напряжения был применен поверенный запоминающий цифровой осциллограф типа Tektronix TDS 1012, подсоединенный к указанной выше кабельной линии связи делителя типа ОДН-2 и размещенный в заглубленном экранированном измерительном бункере. Из данных осциллограммы на рис. 4 (масштаб по вертикали - 5 В/клетка; масштаб по горизонтали - 10 мкс/клетка) видно, что длительность ти1 формируемого в разрядной цепи генератора ГИН-4 (для режима его XX) на воздушном разрядном промежутке длиной 1,5 м апериодического импульса напряжения положительной полярности составляет около 41 мкс (при времени нарастания импульса до уровня амплитуды U_m не более $t_m = 3,5$ мкс). Отсюда на основе экспериментальных данных следует, что генератор ГИН-4 при «старой» зарядной электрической схеме ЗРК ($R_3 = 500$ Ом) в режиме своего XX ($\alpha_1 \approx (\tau_{31})^{-1} \approx 0,7/\tau_{H1} \approx 17,1\cdot10^3$ с⁻¹; $\alpha_2 \approx 3/\tau_{\Phi 1} \approx 2\cdot10^6$ с⁻¹; $\tau_{\Phi 1} - длительность фронта импульса напряжения на уровне (0,3-0,9) от его амплитуды <math>U_m$) способен формировать на электрической нагрузке (например, на электрически прочном длинном воздушном разрядном промежутке) апериодические импульсы высокого и сверхвысокого напряжений временной формы 1,5/41 мкс.

Рисунок 4 – Осциллограмма апериодического импульса напряжения на воздушном разрядном промежутке длиной *l*_P = 1,5 м с электродами-шарами Ø 125 мм (*U*₃ = ±30 кВ; *U_m* = 622,3 кВ; *τ*_{И1} = 41 мкс), полученного в разрядной цепи генератора ГИН-4 с его «старыми» зарядными резисторами (*R*₃ = 500 Ом) при реализации для него режима XX

2. Получение в разрядной цепи генератора ГИН-4 апериодических импульсов микро- и миллисекундной длительности высокого и сверхвысокого напряжения

Для исследования возможности применения генератора ГИН-4 с его «старой» зарядной электрической схемой в составе ЗРК ($R_3 = 500$ Ом) данного генератора при получении согласно действующих требований ГОСТ 1516.2-97 [1] стандартного апериодического коммутационного импульса высокого или сверхвысокого напряжения временной формы 250/2500 мкс с учетом соответствующих для нее (этой формы) нормированных допусков по временным параметрам нами были проведены необходимые экспериментальные исследования. На рис. 5 приведена осциллограмма апериодического импульса высокого напряжения, полученного с помощью указанного выше делителя ОДН-2 на длинном воздушном разрядном промежутке ($l_P = 3$ м) с использованием генератора ГИН-4 (при $R_3 = 500$ Ом) и классической электрической схемы для формирования на выбранном ОИ апериодического коммутационного импульса высокого напряжения временной формы 250/2500 мкс [1,3,4].

Рисунок 5 – Осциллограмма апериодического импульса напряжения на воздушном разрядном промежутке длиной $l_{\rm P}$ = 3 м с электродами-шарами Ø 125 мм (U_3 = ±28 кВ; U_m = 568,7 кВ; t_m = 44 мкс; $\tau_{\rm H1}$ = 120 мкс), полученного в разрядной цепи генератора ГИН-4 с его «старыми» зарядными резисторами (R_3 = 500 Ом) при использовании на выходе ЗРК классической электрической схемы для формирования на ОИ стандартного апериодического коммутационного импульса высокого или сверхвысокого напряжения

Из осциллограммы, изображенной на рис. 5 (масштаб по вертикали – 2 В/клетка; масштаб по горизонтали – 100 мкс/клетка), следует, что длительность полученного в рассматриваемом случае апериодического импульса высокого напряжения на уровне $0,5 \cdot U_m$ составила лишь $\tau_{H1} = 120$ мкс. Полученные подобные опытные результаты окончательно убедили нас в ограниченных возможностях генератора ГИН-4 со «старой» зарядной электрической схемой в составе его ЗРК ($R_3 = 500$ Ом) для формирования с использованием приведенных на рис. 2 основных элементов классической схемы (активного сопротивления R_{Φ} и нагрузочной емкости $C_{\rm H}$), применяемой при генерировании коммутационных импульсов напряжения, требуемых импульсов высокого и свервысокого напряжений с большим временем их подъема $T_{\Pi} = (250\pm50)$ мкс и их большой длительностью на уровне $0,5 \cdot U_m$, составляющей $\tau_{H1} = (2500\pm750)$ мкс [1]. Для расширения технических возможностей генератора ГИН-4 было принято решение о замене в его ЗРК всех 32 «старых» зарядных резисторов номиналом R_3 =500 Ом на «новые» с номиналом R_3 = 30 кОм. На рис. 6 показан общий вид ЗРК генератора ГИН-4, содержащего во всех 32 ступенях «новые» двухсекционные зарядные резисторы (R_3 = 30 кОм), выполненные на основе 100 шт. керамических резисторов ТВО-5-300 Ом (по 50 шт. в каждой секции).

Рисунок 6 – Внешний вид основных элементов зарядно-разрядного контура генератора ГИН-4, содержащего в «новой» зарядной электрической схеме 32 сборных зарядных резистора номиналом 30 кОм каждый, выполненных на основе залитых эпоксидным компаундом 2-х секций по 50 шт. керамических резисторов типа ТВО-5-300 Ом

В результате произведенной замены в ЗРК генератора ГИН-4 каждая из его четырех ветвей «новых» зарядных резисторов R_3 на положительную и отрицательную полярность постоянного зарядного напряжения U_3 стала обладать суммарным активным сопротивлением, равным 240 кОм (восемь последовательно подключенных по высоте генератора резисторов по $R_3 = 30$ кОм каждый). Поэтому для данного варианта выполнения зарядных цепей генератора ГИН-4 оценочное значение постоянной времени разряда его «емкости в разряде» $C_{\Gamma} = 0,125$ мкФ через ветви зарядных резисторов ($R_3 = 30$ кОм) станет приближенно равным $\tau_{32} \approx R_3 \cdot C_{\Gamma} \approx 30 \cdot 10^3 \text{ x} 0.125 \cdot 10^{-6} \approx 3750$ мкс. Тогда оценочное значение на уровне 0,5·U_m длительности получаемого на ОИ (длинном воздушном разрядном промежутке) без учета влияния активного делителя ОДН-2 окажется приближенно сопротивления равным $\tau_{W2} \approx 0.7 \cdot \tau_{32} \approx 2625$ мкс. Постоянная времени заряда τ_{33} через формирующее активное сопротивление $R_{\Phi} = 4,28$ кОм нагрузочной емкости $C_{\rm H} = 13,3$ н Φ , рассчитанных на воздействие импульсного напряжения мегавольтного диапазона, в этом случае станет примерно равной $\tau_{33} \approx R_{\Phi} \cdot C_{\rm H} \approx 56.9$ мкс. Поэтому оценочное значение длительности фронта τ_{Φ2} импульса напряжения на уровне (0,3-0,9) от его амплитуды U_m при этом окажется приближенно равным $\tau_{\Phi 2} \approx 3 \cdot \tau_{33} \approx 171$ мкс. Что касается времени подъема T_{Π} для апериодического коммутационного импульса напряжения, то его оценочное значение при используемых обозначениях может быть найдено из следующего соотношения [2]: $T_{\Pi} = \tau_{32} \cdot \tau_{33} \cdot (\tau_{32} - \tau_{33})^{-1} \cdot ln(\tau_{32}/\tau_{33}).$

Рисунок 7 – Осциллограмма апериодического коммутационного импульса напряжения на воздушном разрядном промежутке длиной $l_{\rm P}$ = 3 м с электродами-шарами Ø 125 мм (U_3 = ±32 кВ; U_m = 622,3 кВ; $T_{\rm II}$ = 200 мкс; $\tau_{\rm H2}$ = 1900 мкс), полученного в разрядной цепи генератора ГИН-4 с его «новыми» зарядными резисторами (R_3 = 30 кОм) при использовании классической электрической схемы для формирования подобного импульса

Тогда с учетом приведенных выше значений τ_{32} и τ_{33} величина времени подъема T_{Π} для рассматриваемого апериодического коммутационного импульса напряжения может быть количественно оценена по указанному соотношению в виде численного значения $T_{\Pi} \approx 238$ мкс. На рис. 7 приведена осциллограмма апериодического коммутационного импульса напряжения на воздушном разрядном промежутке ($l_P = 3$ м), полученная в разрядной цепи генератора ГИН-4 с его «новыми» зарядными резисторами ($R_3 = 30$ кОм) при использовании на его выходе классической электрической схемы (элементов R_{Φ} и $C_{\rm H}$) для формирования подобного импульса напряжения. Из этой осциллограммы (масштаб по вертикали – 5 В/клетка; масштаб по горизонтали – 250 мкс/клетка) следует, что для нового ЗРК исследуемого генератора удается надежно формировать на ОИ стандартный апериодический коммутационный импульс высокого напряжения ($U_m = 622,3$ кВ; $T_{\Pi} = 200$ мкс; $\tau_{H2} = 1900$ мкс). Поэтому можно заключить, что зарядные резисторы генератора ГИН-4 оказывают значительное влияние на длительность $\tau_{\rm H}$ формируемых на нагрузке импульсов напряжения. В этой связи величины их активных сопротивлений R_3 должны выбираться в зависимости от требуемых временных параметров импульсов высокого (сверхвысокого) напряжения, генерируемых на ОИ.

Выводы

1. Постоянная времени разряда τ_{31} «емкости в разряде» C_{Γ} генератора импульсных напряжений через ветви его зарядных резисторов R_3 должна быть соизмеримой с величиной длительности $\tau_{\rm H}$ формируемого на ОИ (электрической нагрузке) апериодического импульса высокого или сверхвысокого напряжения.

2. Генератор импульсных напряжений ГИН-4 с «новыми» зарядными резисторами ($R_3 = 30$ кОм) в классической схеме формирования на длинном воздушном разрядном промежутке апериодического коммутационного импульса напряжения способен генерировать стандартные импульсы высокого и сверхвысокого напряжения временной формы 250/2500 мкс с нормированными по действующему ГОСТ 1516.2-97 допусками.

Список литературы: 1. Межгосударственный стандарт ГОСТ 1516.2-97. Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции. - Минск: Изд-во стандартов, 1997. - 31 с. 2. Кужекин И.П. Испытательные установки и измерения на высоком напряжении. - М.: Энергия, 1980. - 136 с. 3. Баранов М.И., Колиушко Г.М., Кравченко В.И. и др. Генератор тока искусственной молнии для натурных испытаний технических объектов // Приборы и техника эксперимента. – 2008. – № 3. – С. 81-85. 4. Бейер М., Бек В., Меллер К. и др. Техника высоких напряжений: теоретические и практические основы ее применения / Пер. с нем. под ред. В.П. Ларионова. - М.: Энергоатомиздат, 1989. – 555 с. 5. Пекарь И.Р., Фертик С.М. Мощная высоковольтная электроразрядная установка на 4 МВ и 1 МДж // Сб. докл. межвуз. конф.: «Электрофизическая аппаратура и электрическая изоляция». – М.: Энергия, 1970. – С. 22-26. 6. Баранов М.И., Бочаров В.А., Игнатенко Н.Н., Колобовский А.К. Мощные генераторы импульсных напряжений и токов предельных параметров для тестирования силового электроэнергетического оборудования // Електротехніка і електромеханіка. - 2003. - № 2. - С. 75-80. 7. Техника больших импульсных токов и магнитных полей / Под ред. В.С. Комелькова. - М.: Атомиздат, 1970. - 472 с. 8. Баранов М.И., Бочаров Ю.П., Зябко Ю.П. и др. Высоковольтные сильноточные искровые коммутаторы для генераторов импульсных напряжений и токов // Технічна електродинаміка. - 2003. - № 3. - С.41-47. 9. ГОСТ 17512-82. Электрооборудование и электроустановки на напряжение 3 кВ и выше. Методы измерения при испытаниях высоким напряжением. – М.: Изд-во стандартов, 1982. – 32 с. **10**. *Баранов М.И., Колиушко Г.М.* Экспериментальная оценка электрической прочности длинных воздушных промежутков в электродной системе «стержень-стержень» для микросекундных импульсов напряжения // Вісник НТУ «ХПІ». Збірник наукових праць. Тематичний випуск: Техніка та електрофізика високих напруг. – Х.: НТУ «ХПІ». – 2011. – № 49.– С. 11–20.

Поступила в редколлегию 15.10.2012

УДК 621.3.022:537.311.8:621.7.044.7

Влияние зарядных резисторов генератора импульсных напряжений на длительность формируемых на нагрузке апериодических импульсов сверхвысокого напряжения / М. И. Баранов, В. М. Зиньковский, Ю. П. Зябко, Н. Н. Игнатенко, Н. И. Круглик, В. Л. Цехмистро // Вісник НТУ «ХПІ». Серія: Техніка та електрофізика високих напруг. – Х.: НТУ «ХПІ», 2012. – № 52 (958). – С. 15-25. – Бібліогр.: 10 назв.

Наведено результати експериментальних досліджень із впливу величин активних опорів зарядних резисторів ступенів генератора ГІН-4 на часові параметри аперіодичних імпульсів надвисокої напруги мікро- і мілісекундної тривалості, які отримано на довгому повітряному розрядному проміжку.

Ключові слова: генератор імпульсної напруги, зарядний резистор, тривалість імпульсу напруги.

The results of experimental researches are resulted on influence of value of active resistances of charge resistors of stages generator of GPV-4 on the temporal parameters of aperiodic impulse of overhigh-voltage of micro- and millisecond duration, got on a long air bit interval.

Keywords: generator of impulsive voltage, charge resistor, pulsewidth voltage.